INTERACTIONS OF SO₂ WITH $Ca(AlCl_4)_2$ -SO₂Cl₂ ELECTROLYTE: RAMAN STUDIES

CHARLES W. WALKER, Jr., WILLIAM L. WADE, Jr. and MICHAEL BINDER

U.S. Army Electronics Technology and Devices Lab. (LABCOM), Power Sources Division, Fort Monmouth, NJ 07703-5000 (U.S.A.)

(Received August 4, 1988; in revised form November 14, 1988)

Summary

Raman spectra of $Ca(AlCl_4)_2$ -SO₂Cl₂ electrolytes with, and without, added SO₂ have been obtained and analyzed. Added SO₂ preferentially complexes with calcium cations. The altered solvation sheath surrounding calcium cations in the presence of added SO₂ improves ion transport and increases cathode life.

Introduction

The addition of soluble sulfur dioxide to oxyhalide electrolyte containing $Ca(A|C|_4)_2$ salt has been shown to improve specific conductivity and dramatically increase cell capacity in calcium based cells [1 - 4]. The detailed reasons why the addition of SO₂ to this electrolyte improves solution conductivity and cell performance has not been fully elucidated.

In order to understand the interactions of SO_2 with sulfuryl chloride electrolyte species better, Raman spectral studies on various sulfuryl chloride-based electrolytes were performed. The implications of our data may also apply to $Ca(AlCl_4)_2$ -thionyl chloride electrolyte. We have recently reported on NMR studies of $Ca(AlCl_4)_2$ -SO₂Cl₂ electrolytes [5]. Raman spectra have been successfully utilized to non-intrusively study $AlCl_3$ -SOCl₂-LiCl systems [6, 7] and LiAlCl₄/SOCl₂/SO₂ systems [8, 9]. The following electrolyte solutions were studied:

 $SO_{2}Cl_{2}$ $SO_{2}Cl_{2} + SO_{2}$ $1 \text{ M AlCl}_{3}-SO_{2}Cl_{2}$ $1 \text{ M AlCl}_{3}-SO_{2}Cl_{2} + SO_{2}$ $1 \text{ M Ca(AlCl_{4})}_{2}-SO_{2}Cl_{2}$ $1 \text{ M Ca(AlCl_{4})}_{2}-SO_{2}Cl_{2} + SO_{2}$

For each solution, we measured the Raman spectrum from 200 cm^{-1} to 1300 cm^{-1} and analyzed spectral differences of solutions with, and

without, added SO_2 . In each case, when SO_2 was added, the electrolyte was saturated at room temperature with SO_2 . Since Raman spectra from 200 cm⁻¹ to 1100 cm⁻¹ for these solutions do not show any major structural differences, only the 1100 - 1300 cm⁻¹ spectral region will be discussed. We used 1 M concentrations in these studies in order to simulate concentrations used in practical cells.

Experimental

Crystalline CaCl₂ and sublimed AlCl₃ were purchased in ampoules sealed under argon from Anderson Physics, Urbana, IL. Anhydrous SO₂ was obtained from Matheson Gas Co., Rutherford, NJ. Sulfuryl chloride from E.M. Industries, Cherry Hill, NJ was distilled over lithium strips and stored in threaded pressure tubes in an argon-filled dry box (<10 ppm H₂O). All solution preparations were conducted in the argon-filled dry box. Solutions were placed in 1 cm glass NMR tubes that had been adapted with a stopcock and glass joint, attached to a vacuum line and frozen with liquid nitrogen. Then, while an active vacuum was applied, the tubes containing the frozen samples were sealed with a flame. Room temperature Raman spectra were obtained by Drs Adar and Armalino of Instruments S.A., Metuchen, NJ using a U-1000 Laser Raman system set with 400 μ m slit widths. The 60 mW 6471A argon ion laser line was used for excitation. Integration times ranged from 0.25 to 1.0 s per wavenumber.

Results and discussion

(a) SO_2Cl_2

Figure 1 shows Raman spectra of pure SO₂Cl₂ with, and without, added SO₂. Raman spectra of sulfuryl chloride agreed well with published literature data [10]. An SO₂Cl₂ band appeared at 1183 cm⁻¹ and we assigned a small peak at 1145 cm⁻¹ to SO₂ generated by self dissociation of SO₂Cl₂ [11]. Addition of soluble SO_2 to SO_2Cl_2 did not change the position of these bands, but the 1145 cm⁻¹ SO_2 band became more intense. If we assume that room temperature solubility of SO_2 in sulfuryl chloride is similar to the approximately 3 M that had been measured in pure thionyl chloride [12], then by measuring observed peak height ratios of the 1145 cm^{-1} SO₂ band to the 1183 cm⁻¹ SO₂Cl₂ band in both pure and SO₂ saturated SO₂Cl₂, the amount of free SO_2 present in pure SO_2Cl_2 due to self dissociation can be estimated. This calculation yields an SO₂ concentration in pure sulfuryl chloride of 0.33 M which translates into an SO₂Cl₂ self dissociation equilibrium constant of 0.009. This value is in agreement with the value of 0.01 previously measured by Binder et al. [11]. Since the molarity of pure sulfuryl chloride is 12.37 M, the 0.33 M SO₂ (and Cl₂) formed implies that approximately 2.6% of the sulfuryl chloride is dissociated.

(b) $A lCl_3 - SO_2Cl_2$

Figure 2 shows Raman spectra of a 1 M AlCl₃-SO₂Cl₂ solution with, and without, added SO₂. The Raman spectra of 1 M AlCl₃-SO₂Cl₂ solution was very noisy because of light scattering from the highly concentrated electrolyte, and the large amount of background fluorescence probably due to the presence of a charge-transfer complex species such as AlCl₄-SO₂Cl⁺ in solution. Although addition of SO₂ appeared to decrease the background fluorescence, the positions of the SO₂ peak and SO₂Cl₂ band in this electrolyte are essentially unchanged from that found in pure SO₂Cl₂. The new peak appearing at approximately 1237 cm⁻¹ in AlCl₃-SO₂Cl₂ electrolyte contain-

ing added SO_2 may be due to an SO stretch. Thus, although there may be some interaction between SO_2 and $AlCl_4$ - SO_2Cl^+ species formed in solution, they are relatively weak. These conclusions are in agreement with NMR data on these solutions [5].

(c) $Ca(A lCl_4)_2 - SO_2Cl_2$

Figure 3 shows Raman spectra of $Ca(AlCl_4)_2$ -SO₂Cl₂ electrolyte by itself and also when saturated with SO₂. Ca(AlCl₄)₂-SO₂Cl₂ exhibits the same SO₂Cl₂ band seen in other solutions. The electrolyte containing added SO₂ was clearly different. In addition to the SO₂ peak at 1145 cm⁻¹, an addi-

Fig. 3. Raman spectra of (a) 1 M Ca(AlCl₄)₂-SO₂Cl₂; (b) 1 M Ca(AlCl₄)₂-SO₂Cl₂ saturated with SO₂.

tional broad band was noticeable at 1155 cm^{-1} . This new band is similar to the 1157 cm^{-1} band which appeared in LiAlCl₄-SOCl₂ solutions containing added SO₂, which was attributed to a complex formed between SO₂ and Li⁺ cations in which three SO₂ molecules solvate each Li⁺ cation [8, 9]. In a similar manner, in our solutions, we can assume that SO₂ molecules preferentially solvate Ca²⁺ cations.

A simple model can be used to explain the conductivity increase accompanying SO₂ addition to Ca(AlCl₄)₂-SO₂Cl₂ electrolyte. In baseline electrolyte, SO₂Cl₂ molecules normally solvate Ca²⁺ cations, with the partially negative charge on the oxygen atoms from SO₂Cl₂ pointing inward towards the Ca^{2+} cation. In SO₂ saturated electrolyte, the smaller SO₂ molecules replace SO₂Cl₂ molecules in the solvation sheath. As the composition of this solvation layer changes, this zone of molecules surrounding the Ca²⁺ cation changes in size and thus Ca²⁺ cation mobility can increase. Increased ion mobility translates into increased electrolyte conductivity, less *IR* losses in actual cells, and thus higher operating load voltages. All of these effects have been observed in calcium cells [1, 2, 5].

Similarly, the increase in porous carbon cathode capacity observed when cathodes are discharged in calcium-based electrolytes saturated with SO_2 [2] can also be explained. In SO_2 saturated electrolyte, SO_2 bound to Ca^{2+} is transported through the electrolyte to cathode sites where Ca^{2+} cations combine with Cl^- anions (generated at the cathode by solvent reduction) to form insoluble $CaCl_2$. When this occurs, SO_2 is now freed from the cation and cracks the normally glassy $CaCl_2$ discharge product. Since porous carbon cathode capacity is limited by formation of this impermeable layer, cracking of $CaCl_2$ by escaping SO_2 allows continued ion flow into the cathode interior, allows more complete cathode utilization, and thus extends cathode capacity. SEM of porous carbon cathodes discharged in $Ca(AlCl_4)_2$ thionyl chloride electrolyte saturated with SO_2 show a less glassy, more cracked structure than cathodes discharged in electrolyte without added SO_2 .

It is interesting to note that, although pure SO_2Cl_2 or SO_2Cl_2 solutions containing SO_2 do not fluoresce when excited at 465 nm, 1 M solutions of $AlCl_3-SO_2Cl_2$ or $Ca(AlCl_4)_2-SO_2Cl_2$ show significant fluorescence out to 660 nm with a fluorescence peak at about 520 nm. This fluorescence increases by about 20% when these solutions are saturated with SO_2 . Apparently, these solutions undergo a considerable amount of fluorescence self absorption. Addition of SO_2 dilutes the effective electrolyte concentration and thus increases the observed fluorescence from the solutions.

Conclusion

Improvements in cathode capacity and electrolyte conductivity observed when SO_2 is added to $Ca(AlCl_4)_2$ - SO_2Cl_2 solutions are attributed to complexation to Ca^{2+} by added SO_2 . The SO_2 preferentially complexes with Ca^{2+} and serves to improve Ca^{2+} transport by substituting for SO_2Cl_2 species.

Acknowledgements

We thank Dr Sol Gilman of ET & D Laboratory, Power Sources Division, for his constant support, encouragement, and for many valuable and stimulating scientific discussions.

References

- 1 C. W. Walker, Jr., W. L. Wade, Jr., M. Binder and S. Gilman, 32nd Int. Power Sources Symp., Cherry Hill, NJ, 9 - 12 June, 1986.
- 2 C. W. Walker, Jr., W. L. Wade, Jr., M. Binder and S. Gilman, J. Electrochem. Soc., 133 (1986) 1555.
- 3 E. Peled, 32nd Int. Power Sources Symp., Cherry Hill, NJ, 9 12, June, 1986.
- 4 E. Peled, E. Elster, R. Tulman and J. Kimel, J. Power Sources, 14 (1985) 93.
- 5 C. W. Walker, Jr., W. L. Wade, Jr. and M. Binder, J. Electrochem. Soc., 135 (1988) 2471.
- 6 R. C. McDonald and F. W. Dampier, Final Rep. Contract N60921-81-R-0190, Jan. 1983.
- 7 P. A. Mossier-Boss, S. Szpak and J. J. Smith, Spring Meeting of the Electrochem. Soc., Philadelphia, PA, 1987.
- 8 Y. Bedfer, J. Corset, M. C. Dhamelincourt, F. Wallart and P. Barbier, J. Power Sources, 9 (1983) 267.
- 9 M. C. Dhamelincourt, F. Wallart, P. Barbier, G. Mairesse and P. Descroix, J. Power Sources, 14 (1985) 77.
- 10 R. J. Gillespie and E. A. Robinson, Can. J. Chem., 39 (1961) 2171.
- 11 M. Binder, C. W. Walker, Jr., W. L. Wade, Jr. and S. Gilman, Fall Meeting of the Electrochem. Soc., San Diego, CA, Oct. 19 24, 1986.
- 12 K. A. Klinedinst and M. L. McLaughlin, J. Chem. Eng. Data, 24 (1979) 203.